Learn programming for Free

Learn to program with our beginner-friendly tutorials and examples. Read tutorials, try examples, write code and learn to program.

Get the latest tutorials and updates

Learn &

Level Up your skills

Select a wide range of courses to upskill and advance your career!

Beginner's Guide to Machine Learning and AI

These tutorials will provide you with a solid foundation in Machine Learning and AI and prepare you for your career goals.

  • What is Machine Learning (ML)? 
  • Evolution of Artificial Intelligence (AI)
  • Difference Between AI, ML, and Deep Learning
  • Types of Machine Learning: Supervised, Unsupervised, and Reinforcement Learning 
  • Applications of AI and ML in Various Industries
  • Tools and Frameworks for ML/AI Development
  • Linear Algebra
  • Vectors, Matrices, and Tensor Operations 
  • Eigenvalues and Eigenvectors
  • Probability and Statistics
  • Probability Basics: Conditional Probability, Bayes’ Theorem
  • Descriptive and Inferential Statistics 
  • Distributions: Normal, Binomial, Poisson Calculus
  • Derivatives and Gradients
  • Optimization Techniques: Gradient Descent 
  • Linear Regression
  • Least Squares Method 
  • Correlation vs Causation
  • Data Cleaning: Handling Missing and Outlier Data
  • Data Transformation: Encoding Categorical Variables, Scaling 
  • Feature Selection and Engineering
  • Exploratory Data Analysis (EDA) Using Python (Pandas, NumPy, Matplotlib, Seaborn) 
  • Splitting Data into Training and Testing Sets
  • Regression Models 
  • Linear Regression 
  • Polynomial Regression
  • Ridge and Lasso Regression 
  • Classification Models 
  • Logistic Regression
  • Decision Trees 
  • Random Forests
  • Support Vector Machines (SVM) 
  • Naïve Bayes Classifier 
  • Performance Metrics
  • Accuracy, Precision, Recall, F1 Score 
  • Confusion Matrix
  • ROC Curve and AUC
  • Clustering
  • k-Means Clustering 
  • Hierarchical Clustering 
  • DBSCAN
  • Dimensionality Reduction
  • Principal Component Analysis (PCA) t-SNE and UMAP
  • Applications: Market Segmentation, Anomaly Detection
  • Basics of Reinforcement Learning (RL) 
  • Markov Decision Processes (MDP)
  • Q-Learning and Deep Q-Learning 
  • Applications of RL: Robotics, Game Playing
  • Introduction to Neural Networks
  • Activation Functions: Sigmoid, ReLU, Tanh
  • Training Neural Networks: Backpropagation, Optimizers 
  • Convolutional Neural Networks (CNNs) for Image Data 
  • Recurrent Neural Networks (RNNs) for Sequence Data 
  • Long Short-Term Memory (LSTM) Networks   
  • Generative Adversarial Networks (GANs)
  • Frameworks: TensorFlow and PyTorch Basics
  • Text Preprocessing: Tokenization, Lemmatization, Stemming 
  • Word Embeddings: Word2Vec, GloVe
  • Sentiment Analysis
  • Sequence-to-Sequence Models 
  • Transformers and Attention Mechanisms 
  • Chatbots and Virtual Assistants 
  • Basics of Image Processing 
  • Object Detection and Recognition 
  • Image Classification with CNNs
  • Transfer Learning with Pre-trained Models (e.g., VGG, ResNet) 
  • Applications: Facial Recognition, Autonomous Vehicles
  • Ethical Challenges in AI
  • Bias and Fairness in Machine Learning Models 
  • Explainability and Interpretability of AI Systems 
  • Responsible AI Development
  • Introduction to Big Data Concepts 
  • Working with Spark MLlib
  • Cloud Platforms for ML/AI (AWS SageMaker, Google AI, Azure ML) 
  • Distributed Training of ML Models
  • Saving and Loading Trained Models  
  • Deploying Models as APIs Using Flask/Django 
  • Using Docker for Model Deployment 
  • Monitoring Model Performance in Production
  • Predictive Analytics: Predicting House Prices
  • Image Classification: Building a Dog vs. Cat Classifier 
  • Sentiment Analysis on Tweets
  • Recommender System for E-commerce
  • Time Series Forecasting: Stock Price Prediction 
  • Reinforcement Learning: AI for Game Playing

Python Tutorial

Python Data Type

Python Tutorial

Python Data Type

Python Tutorial

Python Data Type

Python Tutorial

Python Data Type

Why Choose StackSool?

StackSkool offers expert-led courses with hands-on projects and flexible learning options to help individuals develop in-demand skills and earn certifications for career advancement.

Assured Job Interview Opportunities

We ensure that every student gets a chance to showcase their skills through guaranteed job interviews with top companies.

Certified
Internships

Gain invaluable hands-on experience with our certified internship programs, designed to provide practical learning and industry exposure.

Skill-Based
Courses

Our curriculum is tailored to meet the demands of the tech industry, covering essential skills like Python programming, full-stack web development, MERN stack development, digital marketing, and data analytics.

Mock Interview
Panels

Prepare for real-world job interviews with our comprehensive demo interview sessions, designed to build confidence and refine your skills.

Hackathons and Stack-
A-Thons

Participate in exciting coding challenges and hackathons to apply your knowledge, earn scholarships, and gain placement support.

Our Comprehensive Training Programs

At StackSkool, we offer a range of meticulously crafted training programs to cater to different interests and career goals. Our programs include:

Get Certified. Get Hired

Yes, you’ll get a certificate representing your Industry Readiness once you submit your projects and clear the mock tests.

Industry-Ready Certification [IRC]

Unlike any academic cerificate, for the first time in india, IRC certificates your job readliness.

Shareble, Credible and Official

Add it to your LinkedIn, share it on Twitter & WhatsApp, or via Email. Make your profile stand out everywhere.

Let companies compete for you

IRC cerificate your industry-readliness and gets you placed with higher salaries.

digital marketing internship certificate

Get Your Doubts Clarified

Faster than in Offline Classes

Get your doubts clarified faster than in offline classes with 24/7 live mentor support at StackSkool.

1500+ Mentors to Resolve Your Doubts

Including Subject Matter Experts, IITians, Teaching Assistants, NxtWavw Alumni, etc.

Scroll to Top

Let's connect with Us!